
Policy-Based Governance within Luna:
Why We Developed Yet Another Agent Framework

Larry Bunch, Jeffrey M. Bradshaw, Tom Eskridge,

Paul J. Feltovich, James Lott, Andrzej Uszok
Florida Institute of Human and Machine Cognition (IHMC)

 Pensacola, FL
e-mail: {lbunch, jbradshaw, teskridge, pfeltovich, jlott,

auszok}@ihmc.us

Marco Carvalho
Department of Computer Science
Florida Institute of Technology

Melbourne, FL
e-mail: mcarvalho@fit.edu

Abstract— In this article, we explain our rationale for the
development of Luna, a software agent framework. In
particular, we focus on how we use capabilities for
comprehensive policy-based governance to ensure that key
requirements for security, declarative specification of
taskwork, and built-in support for joint activity within mixed
teams of humans and agents are satisfied. KAoS, IHMC’s
ontology-based policy services framework, enables the
semantically-rich and extensible semantics and the operational
power and flexibility needed to realize these capabilities within
Luna. We show how Luna is specifically designed to allow
developers and users to leverage different forms of policy-
based governance in an endless variety of ways.

Keywords: sofware agents, multi-agent systems, policy, Luna,
KAoS, OWL, ontologies, cyber security

I. INTRODUCTION
IHMC’s innovations in research and development of

software agent frameworks for multi-agent systems stretch
back more than fifteen years (see, e.g., [1, 2, 3]). As a happy
consequence of progress in the field since those early days,
there now exists a range of interesting agent frameworks,
serving different purposes, available from a variety of
commercial sources and research institutions, that can be
applied with confidence to many practical applications. For
this reason, we had not expected that we would ever have to
create a new agent system. However, contrary to expectation,
we have recently applied our experience to develop a new
agent framework called Luna. In this paper, we attempt to
explain why.

The short answer is that when we were confronted with
the need to apply software agent technology within the
domain of cybersecurity operations, we found that no current
platform adequately met our needs. Foremost among our
requirements were the following: 1) the need for a platform
that would meet the stringent requirements of security
needed for cyber operations; 2) the need for a platform that
would support the interactive definition of common agent
tasks through declarative means rather than software coding,
and 3) the need for a platform that would provide built-in
support for effective coordination of joint activity within
mixed teams of humans and agents. Let us briefly consider
each of these three requirements one by one.

In considering the security requirements of currently
available software agent platforms, the key role of policy
constraints that could govern behavior at every level of the
agent system readily became apparent. In our previous

experiences with agent systems, we had discovered that
people sometimes were reluctant to deploy agents exhibiting
significant autonomy because of concerns that the freedom
and indeterminacy of such agents might allow them to do
undesirable things [4]. We have found that the ability to use
policy to impose constraints on agent behavior, in essence
providing a guarantee to people that agent autonomy would
always be exercised within specified bounds, gave people the
assurance they needed to feel that highly capable agents
could act in a trustworthy, predictable, and safe manner. We
considered that in order to maintain user confidence it was
important that policy be capable of governing not only high-
level agent actions that could be enforced by the agent
platform itself, but also agent behavior that required access
to the lowest levels of operating system and network
behavior. In this way, we hoped to assure that buggy or
malicious agents could be prevented from executing actions
that might impair the integrity of other agents or applications
and from engaging in backchannel network communication
without the knowledge and consent of those people to whom
the agents ought to be accountable.

Second, with respect to the need for a platform
supporting the interactive formulation of common agent tasks
by end users, rather than by software developers, we believe
that policy systems may also prove useful. In past experience
with military, space, and intelligence applications, we have
learned that many common tasks can be formulated as
declarative obligation policies that require given actions to
occur when triggered by a specified context. Further
enhancing the usefulness of such capabilities to define agent
taskwork is the potential for specifying abstract obligations
on an initially-unspecified population of agents in a fashion
that is similar to how concrete obligations are imposed on
specific classes and instances of agents. Abstract actions take
one of two forms: 1) goals to be satisfied through the
operation of top-down planning and execution mechanisms,
or 2) collective obligations to be satisfied through bottom-up
emergent forms of agent coordination. To enable practical
use of obligation policies for the specification of agent tasks,
capabilities for automated two-way mapping of terms in
policy ontologies to agent-method-calls are needed.

Third, to satisfy the need for a platform that would
provide built-in support for effective coordination of joint
activity within mixed teams of humans and agents, we
believe that a policy-based approach also provides a viable
option. Based on our research and development experience
in a variety of applications involving the coordination of

human-agent-robot teamwork (HART), we believe that
important aspects of teamwork such as observability,
directability, interpredictability, learning, and multiplicity
can be addressed by policy-based mechanisms [5, 6].

In this article, we will give a brief overview of the Luna
agent framework and describe how we are using its
capabilities in cyber security applications. Luna is named for
the founder of Pensacola, Tristán de Luna y Arellano (1519 –
1571). We will focus primarily on policy-based features that
support the three requirements outlined above. Section 2 will
give an overview of the KAoS policy services framework.
Section 3 will briefly describe our objectives in the design of
Luna agent framework, and selected highlights of its
features. Section 4 will illustrate by example some of the
ways in which policy governance is being exploited within
Luna. Finally, section five will outline current areas of
research and future directions.

II. THE KAOS POLICY SERVICES FRAMEWORK
Because agents are powerful, we use powerful policy

management and enforcement frameworks to govern their
actions. Whereas many special-purpose policy approaches
are optimized only for specific kinds of tasks (e.g., access
control) and support only the ability to permit or forbid an
action, the ontology-based approach of KAoS enables
semantically-rich specifications of virtually any kind of
policy. It supports not only the ability to permit or forbid an
action in a given context, but also to require that certain
actions be performed when a dynamic, context-specific
trigger is activated (e.g., start doing X, stop doing Y, reduce
your bandwidth usage, log certain actions)—or to waive such
an obligation dynamically if the situation warrants.

The KAoS Policy Services framework [7] was the first to
offer an ontology-based approach (based on the W3C
standard, OWL 2 [8]) to policy representation and reasoning.
It is currently the most successful and mature of all such
efforts. In a review of alternative policy language approaches
presented by the NSA-sponsored Digital Policy Management
(DPM) Architecture Group, KAoS was highlighted as the
“recommended policy ontology starting point” [9].
Following subsequent collaborative efforts by DPM and
IHMC, the KAoS core ontology was adopted as the basis for
future standards efforts in DPM [10].

KAoS has already been integrated into IHMC’s Luna
agent framework, as well as several other agent platforms
and traditional service-oriented architectures. Preliminary
work has been done on agent learning mechanisms that
propagate learning with localized opportunistic mechanisms
inspired by biological analogues. In addition, we plan to
develop capabilities for KAoS to take advantage of localized
agent learning results by allowing new policies to be
constructed programmatically, with optional human
oversight. This would allow learning results from groups of
individual agents that are of high generality or urgency to be
rapidly propagated to whole classes of other agents.

Two important requirements for the KAoS architecture
are modularity and extensibility. These requirements are
supported through a framework with well-defined interfaces
that can be extended, if necessary, with the components

required to support application-specific policies. The basic
elements of the KAoS architecture are shown in Figure 1.

Figure 1: KAoS Policy Services Conceptual Architecture.

Maintaining consistency among the three layers is

handled automatically by KAoS, a task made more
challenging because each layer implements its functionality
in a distributed, rather than a centralized, manner.

Within each of the layers, the end user may plug-in
specialized extension components if needed, as described in
more detail throughout the paper. Such components are
typically developed as Java classes and described using
ontology concepts in the configuration file. They can then be
used by KAoS in policy specification, reasoning and
enforcement processes.

Automatic assistance in the arbitration of policy conflicts
has become increasingly important as the tempo and scale of
policy-governed systems increases. KAoS contains
capabilities for dealing with a variety of static policy
conflicts that can be resolved at design time (e.g., resolving
conflicts when one policy obligates an actor to do something
and another forbids it to do so), and work is underway to
address conflicts in dynamic resource availability that need
to be resolved at run time (e.g., meeting Quality of Service
constraints fairly under conditions of inadequate of
fluctuating resources). The concept of “collective
obligations” provides a formulation that, when coupled with
requisite top-down or bottom-up dynamic planning or
resource allocation mechanisms, can help to deal with the
problem of how to maintain the objectives of high-level
strategic policies while changing specific tactics as needed.

KAoS ensures that the Luna agents respect all security
and privacy policies, that they respond immediately to
human redirection, and that they have the teamwork
knowledge they need to work with analysts and other agents
collaboratively. KAoS policies also ensure that the entire
system adapts automatically to changes in context,
environment, task reprioritization, or resources. New or
modified policies can be made effective immediately.

III. THE LUNA AGENT FRAMEWORK

A. Design Objectives
In addition to the need for comprehensive policy

governance to support security, end-use taskwork definition,
and teamwork coordination described earlier, the following
basic objectives were also important in our approach to
framework design and implementation:
• Lightweight overhead for each agent
• Efficient and reliable agent operations
• Fully-distributed operations
• Flexible agent messaging
• Full semantic representation
• Automatic two-way mapping between OWL ontologies

and Java methods

B. Overview of Luna Features
In our cybersecurity applications, Luna agents function

both as interactive assistants to analysts and as continuously-
running background aids to data processing and knowledge
discovery. Luna agents achieve much of their power through
built-in teamwork capabilities that, in conjunction with
IHMC’s KAoS policy services framework, allow them to be
proactive, collaborative, observable, and directable. Luna
also relies on KAoS for capabilities such as registration,
discovery, self-description of actions and capabilities,
communications transport, and messaging.

Figure 2 illustrates how KAoS integrates with Luna to
provide services and to enforce policies. An OWL
representation of Luna is maintained within the KAoS
distributed Directory Service. Through its interactions with
the Luna host environment, KAoS regulates the lifecycle of
both the environment (e.g., start and stop Luna) and the
agents (e.g., create, pause, resume, stop, and move agents).
Policy can also regulate environment context for shared
agent memory (e.g., getting and setting its properties),
allowing efficient parallel processing of large data sets. An
agent-based implementation of context mirroring across
different Luna environments is provided. Through policy, the
Luna host environment also governs agent progress
appraisal—a subject to which we will return later.

Because Luna policy checking and enforcement is done
by virtue of KAoS-based “method-call” messages to agents
and other components, actions taken by an agent on its own
(invoking its own methods) are not subject to policy. This
design choice posed no problems for the use cases we
envisioned.

In the future, KAoS will also integrate with VIA to
provide a means of policy enforcement outside the Luna host
enironment. VIA [11] is a next generation cross-layer
communications substrate for tactical networks and
information systems. VIA allows fine-grained enforcement
of policy down to operating-system-level operations such as
the opening of a socket and the monitoring and filtering of
specific elements of agent messaging.

Figure 2: Luna Conceptual Architecture.

In order to support dynamic scalability, load balancing,

adaptive resource management, and specific application
needs, the Luna platform supports the policy-governed
option of allowing the state of agents (vs. code of agents) to
migrate between operating environments and hosts. The
Luna environment maintains agent mailboxes with message
forwarding when agents migrate. Luna state mobility will
provide the foundation for future implementation of agent
persistence (i.e., saving and loading agent state to a persistent
store).

C. Automated Mapping Between Java and OWL
Within the base class for Luna cyber agents are defined

some common agent tasks that can be called through OWL
descriptions. However, one of the most important
innovations in Luna is the ability to add custom agent actions
to the policy ontology, based on their Java equivalent. IHMC
provides a Java2OWL tool to assist with this task.

To understand this feature, it is important to understand
that the framework allows translation from the KAoS
‘method call’ messages to OWL action instance descriptions
for policy checking, and back to method calls. The ability to
convert an OWL description to a Java method call is the
feature that puts ‘teeth’ in obligations. A Luna environment
can invoke such methods on itself or any set of agents hosted
on that Luna, or pass the obligation to one or more remote
Luna environments for execution. Combine this obligation
invocation feature with the fact that obligations can be
triggered by one set of actors and fulfilled by another set of
actors (e.g., Luna obligated to do X when Agent does Y, All
Agents obligated to do X when Luna does Y), and we have a
foundation for the implementation of what are called in
KAoS “collective obligations” [12]. These are obligations
that specify what must be done by some group of agents
without saying exactly how it should be done and which
specific agent(s) should do it.

The Java2OWL tool can be used to browse custom agent
code, select methods to bring under policy control, and
generate an OWL description for the selected method
signatures. These methods are then available for policies as
Actions performed by Agents of that type. The only

prerequisite is that agent code must be available (on the
classpath) when Luna starts.

Our ontology for method call requests is currently low-
level, representing Java Methods and their parameters
including the parameter data types and the order of the
parameters in the method signature.

Figure 3: Java2OWL Tool.

D. Selected Applications of Luna to Cyber Operations
Agents play a variety of roles in our cyber operations

framework [12]. Among the most demanding is in multi-
layer agent processing and tagging of live or retrospectively
played-back NetFlow data representing worldwide Internet
traffic. A high-level view of roles and relationships among
agents relating to these functions is shown in figure 4.

Incoming UDP traffic goes to a NetFlow agent for
parsing and transformation into Java objects (1). In principle,
the same or different data could be routed to multiple
NetFlow agents on the same or different hosts to share the
processing load. The NetFlow agent sends the data to any
number of Tagger agents that work in parallel in real-time to
tag the data (2). For example, Watchlist agents tag data that
appears on whitelists or blacklists while IDS Match agents
tag data corresponding to intrusion detection alerts. Drawing
on selected results from low-level tagging agents, Attack
pattern agents may be defined to look for higher-level attack
patterns. By this means, agent annotations do not merely
highlight low-level indicators of threat patterns, but can
directly identify the type of threat itself. For instance, instead
of requiring the analyst to notice that a configuration of
connecting lines (some of which may be obscured) indicates
a distributed port scan, agents working on abstracted data
semantics can directly indicate the source of the attack. As
another example, if a message is anomalous because it is
sending oversized packets to a port associated with an SQL
database, higher-level agents can abstract that message and
represent it as an instance of an SQL injection attack. A

system of semaphores ensures that all the Tagger agents have
completed their work before the NetFlow agent sends results
to the Flow Cache (3). NetFlow Visualization agents enforce
policies that mediate data being sent to analyst displays,
ensuring, among other things, that data not authorized for
viewing by particular users are automatically filtered out (4).

Figure 4: Agent processing and tagging of NetFlow data.

The Esper complex event processor [13] provides support

for efficient ad hoc queries of many types that can be
initiated and consumed by other visualization agents (e.g.,
Stripchart View agent) or by agents of other types for further
processing (5). We are also considering the use of Esper for
data stream handling further upstream in the agent analytic
process.

CogLog Correlator agents ingest combined data from
selected Tagger agents operating on real-time data (6) and
historical data within the CogLog (7). The CogLog is
a Semantic-Wiki-based tool prototype with which software
agents and human analysts can maintain and use a log of
findings pertinent to a given investigation, while also linking
to other relevant information from prior cases [12]. Unlike
the real-time Tagger agents, the Correlator agent can perform
deeper kinds of analytics in “out of band” mode. Among
other things, this correlated information can help different
analysts “connect the dots” between related investigative
efforts. The Correlator agents may send additional data
annotations to NetFlow Visualization agents and/or to agents
supporting other visualizations (e.g., Connection Graph
view) (8). Our Attack Pattern Learning Agents provide
another example of an “out of band” agent type. These
agents consume and process all NetFlows (rather than just
subsets of tagged data produced by Tagger agents) in order
to learn and propagate useful threat patterns.

In the future, exploration of larger questions of
adversarial intent, attack strategies, and social connections
among attackers could also proceed along similar lines of
increasing abstraction in agent processing. The ability to
reduce perception and reasoning requirements on the analyst
through fixed or ad hoc organizations of agents processing
visual and logical data dimensions is a major benefit of
agent-based analytics.

Figure 5: Initial Luna performance data.

Initial performance data on Luna is promising, even

though we have not yet focused significant attention on
optimization of the framework. With respect to live
processing on our test configuration (Mac Pro with two
Quad-core Intel Xeon @ 2.26GHz with 16 GB RAM,
1000baseT Ethernet, Mac Pro RAID Level 0, 4x2TB), the
IHMC network of ~100 nodes is the only one we have tested
thus far. Performance at this small scale of less than 1000
flows/second is, of course, excellent.

With respect to retrospective performance in our current
configuration, the maximum rate of our CyberLab NetFlow
emulator playing back Internet 2 data is 80k flows/second
(~14MB/second) and the maximum rate of Luna agent
NetFlow parsing is 60k flows/second. Sample configurations
that include the additional task of maintaining a cache of
NetFlows in shared RAM result in rates of 52k flows/second
(single watchlist agent with 50 ips on its list), 49k
flows/second (a Watchlist agent added with 700 IPs on its
list), 43k flows/second (four more Watchlist agents added
with 10 IPs each on their lists), and 39k flows/second (an
IDS Match agent added whose performance is constrained
by file I/O).

We realize that these performance numbers fall short of
requirements for some large-scale cyber applications. We are
confident that an effort to optimize agent processing within
and between agents would yield significant performance
increases. More importantly, because of the distributed
nature of the Luna architecture, we are in a good position to
take advantage of whatever scale of computing and network
resources might be available for a given application.

IV. LUNA POLICY EXAMPLES
Luna is governed by policy statements that take either the

form of authorization or obligation policies as follows:
• Actor is [authorized | not authorized] to perform Action

requested by Actor with attributes…
• [before | after] Actor performs Action requested by

Actor with attributes
Actor is [obligated | not obligated] to perform Action
with attributes…

When Luna policies are defined, the underlined terms
above (Actor, Action) are replaced in point-and-click fashion
with more-specific concepts automatically drawn from the

extensible ontologies maintained within KAoS. Actors in the
policy statements above could be made to refer to one or
more classes or instances of the Luna host environment, e.g.:
• Class: All Luna environments
• Extensionally defined collection of groups: Luna in

group 'NOC_A', 'NOC_B’
• Intensionally defined collection of groups: Luna with

context property 'Alert Level' in ('Critical', 'High’)
• Extensionally defined collection of individuals:

LunaNOC_A_1, LunaNOC_A_Shared
• Intensionally defined collection of individuals: Luna

containing agent 'BotnetC2Correlator’
Actors could also be made to refer to classes and

instances of Luna agents, e.g.:
• Class: All Agents
• Intensionally defined Group: Watchlist matching agents
• Extensionally defined Group: Agents in group NOC_A
• Extensionally defined Group: Agents running in Luna

NOC_A_1
• Specific Instances: BotnetC3Correlator_Agent,

ZeusWatchlistAgent
To make these ideas more concrete, we now give three

groups of examples: 1). Teamwork policies; 2). Network
Operations Center scenario policies; 3). Policies for tuning
system performance.

A. Teamwork Policy Examples
It is one thing to enable software agents to perform the

taskwork needed to help human analysts with complex high-
tempo tasks and quite another to equip them with the
capabilities that allow them to become good team players.
Our perspective on resilient human-agent teamwork comes
from joint activity theory [14], a generalization of Herbert
Clark’s work in linguistics [15, p. 3]. Our theory describes
the criteria for joint activity, outlines aspects of its
“choreography,” and highlights the major requirements for
effective coordination in situations where the activities of
parties are interdependent. For the purposes of this
discussion, we focus primarily on examples of the sorts of
policies we are designing to support human-agent teamwork,
under the headings of observability, directability,
interpredictability, learning, and multiplicity:
• Observability: An important aspect of observability is

being able to know how agents are progressing on their
current tasks, especially those in which their actions are
interdependent (e.g., “I'm not going to be able to get you
the information you need to get started on your task by
the deadline to which we agreed previously.”) To
support this, we have implemented built-in mechanisms
and policies for progress appraisal [16] in Luna.

• Directability: When agents need to be redirected due to
changes in priorities, new knowledge, or failures, users
can add and retract obligations on particular agents or
classes of agents or Luna environments at runtime. This
includes obligations relating to life-cycle control, such
as pausing or resuming their operation.

• Interpredictability: One way in which the
interpredictability of an agent can be assessed is through

a combination of data on its current progress with its
past history of work in similar contexts.

• Learning: The observability features of agents can be
used to support capabilities for policy learning—i.e.,
creating new KAoS policies programmatically based on
patterns that are consistent and important to tasks being
undertaken by a whole class of agents. The process of
learning itself may be subject to policies relating to the
scope of adaptation permitted in a given context. It may
also be subject to optional policy requirements for
human oversight.

• Multiplicity: Multiplicity, the requirement for multiple
perspectives on the same data, can be supported by
policy-based enforcement of data consistency across
these perspectives. For example, policies would ensure
that changes in one view of the data would propagate
correctly (and with the appropriate policy restrictions on
what can be viewed) to other kinds and instances of
views on that data.

Of the areas mentioned above, progress appraisal and
agent (re-)directability through obligations are currently the
most well-worked-out aspect of these five human-agent-
teamwork-based considerations in Luna. As an illustration of
how these considerations can be supported through policy,
we describe our implementation of progress appraisal below.

Providing regular reports of agent progress is an integral
feature of every Luna agent. The Luna environment handles
all of the progress management including:
• Registration and deregistration of users and agents to

receive progress reports from particular agents;
• Maintaining a timer to send agent progress reports

periodically (e.g., every minute);
• Querying the agent periodically for its current progress,

or providing an interface for agents to announce
milestone-based progress events;

• Distributing the agent’s progress reports to the interested
parties.

The decision to have the Luna environment manage
progress appraisal rather than relying on the agents
themselves was a deliberate one. Some of the key advantages
over agent self-managed progress appraisal include:
• Luna can provide progress in conditions where the agent

cannot;
• Luna may pause an agent so that it would no longer

capable of sending progress messages.
• The agent may be buggy or otherwise unresponsive, but

Luna will still send progress to users (indicating that the
agent is unresponsive);

• Policy control over the frequency and recipients of
progress appraisal enables directing or redirecting
progress appraisals from groups of agents to other
agents for further analysis.

B. Network Operations Center Scenario Policy Examples
In the development of experimental scenarios for

network operations center use of our framework, we
considered requirements for access control, action
authorization, information sharing, and coordination between

local and remote sites. Below we give some illustrative
examples of KAoS policy support in Luna for these issues.

Imagine a scenario involving two cooperating network
operations centers (NOC) at different locations, NOC_A and
NOC_B. Each NOC has its own policies, in addition to
policies that are shared between them.

NOC_A has three Luna environments:
• Luna_NOC_A_Monitoring: Within this environment,

monitoring administrators from NOC_A create and
maintain agents to support shared visualizations.

• Luna_NOC_A_Analysis: Within this environment,
analysts from NOC_A create agents to perform ad hoc
analysis and investigation tasks.

• Luna_NOC_A_Shared: Within this environment,
analysts from either NOC_A or NOC_B can create
agents to perform ad hoc analysis and investigation
tasks.

NOC_B has one Luna environment:
• Luna_NOC_B: Within this environment, analysts from

NOC_B create agents to perform monitoring, ad hoc
analysis, and investigation tasks.

KAoS uses the concept of “domains” to define the scope
of policies. In this case, the two NOCS will share a domain.
In addition, each NOC will have its own domain, and, within
NOC A, each NOC A Luna environment will be a
subdomain to the NOC A domain. For the convenience of
the administrator wanting to minimize the number of policies
that need to be defined, the mode of a domain can be set to
be “tyrannical” (where everything is forbidden that is not
explicitly authorized) or “laissez-faire” (where everything is
permitted that is not explicitly forbidden). Here are some
examples of policies in the scenario, assuming a tyrannical
domain.

Authorization Policy Examples. This positive
authorization policy specifies that NOC Administrators can
make any request of any Luna environment:

Any Luna is authorized to perform any Action
requested by a member of the NOC_Administrators Group

This positive authorization policy allows any user to
make requests of any Luna environment belonging to the
same group as that user.

Luna in any Group is authorized to perform any Action
requested by a member of the same Group

The positive authorization policy permits remote users
from NOC_B to manage agents within the shared Luna
environment, while the negative authorization policy
prevents these users from lifecycle actions such as stopping
the environment or changing its context properties:

LunaNOC_A_Shared is authorized to perform any Action
requested by a member of Group NOC_B

LunaNOC_A_Shared is not authorized to perform any
environment lifecycle action

requested by a member of Group NOC_B
Obligation Policy Examples. This positive obligation

policy requires any newly created Watchlist agent to send
progress reports to the Watchlist Correlation agent:

After Any Luna performs create agent of type 'Watchlist Agent,’
that Luna is obligated to add agent progress listener where:

listener is 'Watchlist Correlation Agent’

agent is the agent that was created
This positive obligation policy requires approval by

NOC-Aadmin before any agents not specifically requested
migrate into the NOC_A group:

Before Luna_NOC_A_Shared performs move agent where
destination in group NOC_A
and not requested by ‘NOC-AAdmin’

That Luna is obligated to obtain approval from ‘NOC-AAdmin’
Obligation Policy Examples Combining Luna Agents and

Environments. The Actors in an obligation policy may be a
mix of Luna environments and agents. In this way, a Luna
environment can respond to specified agent actions and vice
versa.

For example, this positive obligation policy requires the
Luna_NOC_A_Analysis environment to send a progress
update every time a Botnet agent identifies a new botnet
command-and-control address:

After BotnetAgent performs FoundC2
Luna_NOC_A_Analysis is obligated to perform
SendAgentProgressUpdate

This positive obligation policy requires a class of agents
that keep large data caches in RAM to clear their caches
before being paused:

Before Luna performs PauseAgent where
Agent is of type CacheAgent

That Agent is obligated to perform DumpCache

C. Policy Examples for Tuning System Performance
As described above, policy services can be used to

regulate the taskwork and teamwork of Luna agents. A few
examples of additional potential uses of policy for tuning
system performance include the following:

• Service orchestration. Such policies might regulate
how an agent chooses other actors to construct
capabilities for high-level mission requirements.

• Operational bounds. A Web server that receives a
request with a SQL query will search for the best
database to execute that query—and may in fact
induce the creation of a database for such purpose.
Policies might govern when the creation of a
database is permitted and when it is not.

• QoS policies. Such policies would define the
operational ranges of different services and define
the trade-off strategies between different metrics
[17].

V. CONCLUSIONS
This paper has provided an overview of some of the

unique features of the Luna agent framework. In particular,
we have shown how Luna is specifically designed to allow
developers and users to leverage different forms of policy-
based governance in an endless variety of ways. Although
our illustrations have been drawn from the application of
Luna to cyber operations, we believe that its features will
prove useful in the future for many additional problem
domains.

REFERENCES
[1] Carvalho, Marco, Thomas B. Cowin, and Niranjan Suri. "MAST: A

mobile agent based security tool." Proceedings of the Seventh World

Multiconference on Systemics, Cybernetics, and Informatics (SCI
2003), 2003.

[2] Bradshaw, Jeffrey M., Stewart Dutfield, Pete Benoit, and John D.
Woolley. "KAoS: Toward an industrial-strength generic agent
architecture." In Software Agents, edited by J. M. Bradshaw, 375-418.
Cambridge, MA: AAAI Press/The MIT Press, 1997.

[3] Suri, Niranjan, Jeffrey M. Bradshaw, M. R. Breedy, P. T. Groth, G.
A. Hill, R. Jeffers, T. R. Mitrovich, B. R. Pouliot, and D. S. Smith.
"NOMADS: Toward an environment for strong and safe agent
mobility." Proceedings of Autonomous Agents 2000, Barcelona,
Spain 2000.

[4] Bradshaw, J. M., Patrick Beautement, Maggie R. Breedy, Larry
Bunch, Sergey V. Drakunov, Paul J. Feltovich, Robert R. Hoffman,
Renia Jeffers, Matthew Johnson, Shriniwas Kulkarni, James Lott,
Anil Raj, Niranjan Suri, and Andrzej Uszok. "Making agents
acceptable to people." In Intelligent Technologies for Information
Analysis: Advances in Agents, Data Mining, and Statistical Learning,
edited by N. Zhong and J. Liu, 361-400. Berlin: Springer Verlag,
2004.

[5] Klein, Gary, David D. Woods, J. M. Bradshaw, Robert Hoffman, and
Paul Feltovich. "Ten challenges for making automation a "team
player" in joint human-agent activity." IEEE Intelligent Systems 19,
no. 6 (November-December 2004): 91-95.

[6] Bradshaw, J. M., Paul Feltovich, and Matthew Johnson. "Human-
Agent Interaction." In Handbook of Human-Machine Interaction,
edited by Guy Boy, 283-302. Ashgate, 2011.

[7] Uszok, A., Bradshaw, J. M., Lott, J., Johnson, M., Breedy, M.,
Vignati, M., Whittaker, K., Jakubowski, K., & Bowcock, J. Toward a
flexible ontology-based approach for network operations using the
KAoS framework. Proceedings of MILCOM 2011. New York City,
NY: IEEE Press, November 2011, pp. 1108-1114.

[8] OWL 2 Web Ontology Language. http://www.w3.org/TR/owl2-
overview/ (accessed 18 July 2012).

[9] Westerinen, A., Digital Policy Management: Policy Language
Overview. Presentation at the DPM Meeting, Jan 19, 2011 / Updated
Mar 27, 2011.

[10] Westerinen, A., et al., Digital Policy Management Ontology
Discussion. Presentation at the DPM Meeting, January 25, 2012.

[11] Carvalho, M., A. Granados, C. Perez, M. Arguedas, R. Winkler, J.
Kovach, Steve Choy. A Cross-Layer Communications Susbtrate for
Tactical Environments. Patricia McDermott, Laurel Allender (eds.),
Chap. 5, Collaborative Technologies Alliance, Advanced Decisions
Architecture, 2009.

[12] Bradshaw, J.M., Marco Carvalho, Larry Bunch, Tom Eskridge, Paul
Feltovich, Matt Johnson, and Dan Kidwell. Sol: An Agent-Based
Framework for Cyber Situation Awareness. Künstliche Intelligenz:
Volume 26, Issue 2 (2012), pp. 127-140.

[13] EsperTech. http://esper.codehaus.org/ (accessed 18 July 2012).
[14] Klein, Gary, Paul J. Feltovich, Jeffrey M. Bradshaw, and David D.

Woods. "Common ground and coordination in joint activity." In
Organizational Simulation, edited by William B. Rouse and Kennteth
R. Boff, 139-84. New York City, NY: John Wiley, 2004.

[15] Clark, H. H. Using Language. Cambridge, UK: Cambridge
University Press, 1996.

[16] Feltovich, Paul, J.M. Bradshaw, William J. Clancey, Matthew
Johnson, and Larry Bunch. Progress appraisal as a challenging
element of coordination in human and machine joint activity.
Presented at Engineering Societies for the Agents World VIII, Athens
Greece, October, 2007. In Engineering Societies in the Agents’ World
VIII, edited by A. Artikis, G. O’Hare, K. Stathis, and G. Vouros, 124-
141. Lecture Notes in Artificial Intelligence 4995. Heidelberg
Germany: Springer, 2008.

[17] J. Loyall, M. Gillen, A. Paulos, L. Bunch, M. Carvalho, J.
Edmondson, D. Schmidt, A. Martignoni III, A. Sinclair, "Dynamic
Policy-Driven Quality of Service in Service-Oriented Information
Management Systems". Journal of Software: Practice and
Experience. To appear, 2011.

