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Abstract— In this article, we explain our rationale for the 
development of Luna, a software agent framework. In 
particular, we focus on how we use capabilities for 
comprehensive policy-based governance to ensure that key 
requirements for security, declarative specification of 
taskwork, and built-in support for joint activity within mixed 
teams of humans and agents are satisfied. KAoS, IHMC’s 
ontology-based policy services framework, enables the 
semantically-rich and extensible semantics and the operational 
power and flexibility needed to realize these capabilities within 
Luna. We show how Luna is specifically designed to allow 
developers and users to leverage different forms of policy-
based governance in an endless variety of ways. 
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I. INTRODUCTION 
IHMC’s innovations in research and development of 

software agent frameworks for multi-agent systems stretch 
back more than fifteen years (see, e.g., [1, 2, 3]). As a happy 
consequence of progress in the field since those early days, 
there now exists a range of interesting agent frameworks, 
serving different purposes, available from a variety of 
commercial sources and research institutions, that can be 
applied with confidence to many practical applications. For 
this reason, we had not expected that we would ever have to 
create a new agent system. However, contrary to expectation, 
we have recently applied our experience to develop a new 
agent framework called Luna. In this paper, we attempt to 
explain why. 

The short answer is that when we were confronted with 
the need to apply software agent technology within the 
domain of cybersecurity operations, we found that no current 
platform adequately met our needs. Foremost among our 
requirements were the following: 1) the need for a platform 
that would meet the stringent requirements of security 
needed for cyber operations; 2) the need for a platform that 
would support the interactive definition of common agent 
tasks through declarative means rather than software coding, 
and 3) the need for a platform that would provide built-in 
support for effective coordination of joint activity within 
mixed teams of humans and agents. Let us briefly consider 
each of these three requirements one by one. 

In considering the security requirements of currently 
available software agent platforms, the key role of policy 
constraints that could govern behavior at every level of the 
agent system readily became apparent. In our previous 

experiences with agent systems, we had discovered that 
people sometimes were reluctant to deploy agents exhibiting 
significant autonomy because of concerns that the freedom 
and indeterminacy of such agents might allow them to do 
undesirable things [4]. We have found that the ability to use 
policy to impose constraints on agent behavior, in essence 
providing a guarantee to people that agent autonomy would 
always be exercised within specified bounds, gave people the 
assurance they needed to feel that highly capable agents 
could act in a trustworthy, predictable, and safe manner. We 
considered that in order to maintain user confidence it was 
important that policy be capable of governing not only high-
level agent actions that could be enforced by the agent 
platform itself, but also agent behavior that required access 
to the lowest levels of operating system and network 
behavior. In this way, we hoped to assure that buggy or 
malicious agents could be prevented from executing actions 
that might impair the integrity of other agents or applications 
and from engaging in backchannel network communication 
without the knowledge and consent of those people to whom 
the agents ought to be accountable. 

Second, with respect to the need for a platform 
supporting the interactive formulation of common agent tasks 
by end users, rather than by software developers, we believe 
that policy systems may also prove useful. In past experience 
with military, space, and intelligence applications, we have 
learned that many common tasks can be formulated as 
declarative obligation policies that require given actions to 
occur when triggered by a specified context. Further 
enhancing the usefulness of such capabilities to define agent 
taskwork is the potential for specifying abstract obligations 
on an initially-unspecified population of agents in a fashion 
that is similar to how concrete obligations are imposed on 
specific classes and instances of agents. Abstract actions take 
one of two forms: 1) goals to be satisfied through the 
operation of top-down planning and execution mechanisms, 
or 2) collective obligations to be satisfied through bottom-up 
emergent forms of agent coordination. To enable practical 
use of obligation policies for the specification of agent tasks, 
capabilities for automated two-way mapping of terms in 
policy ontologies to agent-method-calls are needed. 

Third, to satisfy the need for a platform that would 
provide built-in support for effective coordination of joint 
activity within mixed teams of humans and agents, we 
believe that a policy-based approach also provides a viable 
option. Based on our research and development experience 
in a variety of applications involving the coordination of 



human-agent-robot teamwork (HART), we believe that 
important aspects of teamwork such as observability, 
directability, interpredictability, learning, and multiplicity 
can be addressed by policy-based mechanisms [5, 6]. 

In this article, we will give a brief overview of the Luna 
agent framework and describe how we are using its 
capabilities in cyber security applications. Luna is named for 
the founder of Pensacola, Tristán de Luna y Arellano (1519 – 
1571). We will focus primarily on policy-based features that 
support the three requirements outlined above. Section 2 will 
give an overview of the KAoS policy services framework. 
Section 3 will briefly describe our objectives in the design of 
Luna agent framework, and selected highlights of its 
features. Section 4 will illustrate by example some of the 
ways in which policy governance is being exploited within 
Luna. Finally, section five will outline current areas of 
research and future directions. 

II. THE KAOS POLICY SERVICES FRAMEWORK 
Because agents are powerful, we use powerful policy 

management and enforcement frameworks to govern their 
actions. Whereas many special-purpose policy approaches 
are optimized only for specific kinds of tasks (e.g., access 
control) and support only the ability to permit or forbid an 
action, the ontology-based approach of KAoS enables 
semantically-rich specifications of virtually any kind of 
policy. It supports not only the ability to permit or forbid an 
action in a given context, but also to require that certain 
actions be performed when a dynamic, context-specific 
trigger is activated (e.g., start doing X, stop doing Y, reduce 
your bandwidth usage, log certain actions)—or to waive such 
an obligation dynamically if the situation warrants. 

The KAoS Policy Services framework [7] was the first to 
offer an ontology-based approach (based on the W3C 
standard, OWL 2 [8]) to policy representation and reasoning. 
It is currently the most successful and mature of all such 
efforts. In a review of alternative policy language approaches 
presented by the NSA-sponsored Digital Policy Management 
(DPM) Architecture Group, KAoS was highlighted as the 
“recommended policy ontology starting point” [9]. 
Following subsequent collaborative efforts by DPM and 
IHMC, the KAoS core ontology was adopted as the basis for 
future standards efforts in DPM [10]. 

KAoS has already been integrated into IHMC’s Luna 
agent framework, as well as several other agent platforms 
and traditional service-oriented architectures. Preliminary 
work has been done on agent learning mechanisms that 
propagate learning with localized opportunistic mechanisms 
inspired by biological analogues. In addition, we plan to 
develop capabilities for KAoS to take advantage of localized 
agent learning results by allowing new policies to be 
constructed programmatically, with optional human 
oversight. This would allow learning results from groups of 
individual agents that are of high generality or urgency to be 
rapidly propagated to whole classes of other agents. 

Two important requirements for the KAoS architecture 
are modularity and extensibility. These requirements are 
supported through a framework with well-defined interfaces 
that can be extended, if necessary, with the components 

required to support application-specific policies. The basic 
elements of the KAoS architecture are shown in Figure 1. 

 

 
Figure 1: KAoS Policy Services Conceptual Architecture. 

 
Maintaining consistency among the three layers is 

handled automatically by KAoS, a task made more 
challenging because each layer implements its functionality 
in a distributed, rather than a centralized, manner. 

Within each of the layers, the end user may plug-in 
specialized extension components if needed, as described in 
more detail throughout the paper. Such components are 
typically developed as Java classes and described using 
ontology concepts in the configuration file. They can then be 
used by KAoS in policy specification, reasoning and 
enforcement processes. 

Automatic assistance in the arbitration of policy conflicts 
has become increasingly important as the tempo and scale of 
policy-governed systems increases. KAoS contains 
capabilities for dealing with a variety of static policy 
conflicts that can be resolved at design time (e.g., resolving 
conflicts when one policy obligates an actor to do something 
and another forbids it to do so), and work is underway to 
address conflicts in dynamic resource availability that need 
to be resolved at run time (e.g., meeting Quality of Service 
constraints fairly under conditions of inadequate of 
fluctuating resources). The concept of “collective 
obligations” provides a formulation that, when coupled with 
requisite top-down or bottom-up dynamic planning or 
resource allocation mechanisms, can help to deal with the 
problem of how to maintain the objectives of high-level 
strategic policies while changing specific tactics as needed. 

KAoS ensures that the Luna agents respect all security 
and privacy policies, that they respond immediately to 
human redirection, and that they have the teamwork 
knowledge they need to work with analysts and other agents 
collaboratively. KAoS policies also ensure that the entire 
system adapts automatically to changes in context, 
environment, task reprioritization, or resources. New or 
modified policies can be made effective immediately. 



III. THE LUNA AGENT FRAMEWORK 

A. Design Objectives 
In addition to the need for comprehensive policy 

governance to support security, end-use taskwork definition, 
and teamwork coordination described earlier, the following 
basic objectives were also important in our approach to 
framework design and implementation: 
• Lightweight overhead for each agent 
• Efficient and reliable agent operations 
• Fully-distributed operations 
• Flexible agent messaging 
• Full semantic representation 
• Automatic two-way mapping between OWL ontologies 

and Java methods 

B. Overview of Luna Features 
In our cybersecurity applications, Luna agents function 

both as interactive assistants to analysts and as continuously-
running background aids to data processing and knowledge 
discovery. Luna agents achieve much of their power through 
built-in teamwork capabilities that, in conjunction with 
IHMC’s KAoS policy services framework, allow them to be 
proactive, collaborative, observable, and directable. Luna 
also relies on KAoS for capabilities such as registration, 
discovery, self-description of actions and capabilities, 
communications transport, and messaging. 

Figure 2 illustrates how KAoS integrates with Luna to 
provide services and to enforce policies. An OWL 
representation of Luna is maintained within the KAoS 
distributed Directory Service. Through its interactions with 
the Luna host environment, KAoS regulates the lifecycle of 
both the environment (e.g., start and stop Luna) and the 
agents (e.g., create, pause, resume, stop, and move agents). 
Policy can also regulate environment context for shared 
agent memory (e.g., getting and setting its properties), 
allowing efficient parallel processing of large data sets. An 
agent-based implementation of context mirroring across 
different Luna environments is provided. Through policy, the 
Luna host environment also governs agent progress 
appraisal—a subject to which we will return later. 

Because Luna policy checking and enforcement is done 
by virtue of KAoS-based “method-call” messages to agents 
and other components, actions taken by an agent on its own 
(invoking its own methods) are not subject to policy. This 
design choice posed no problems for the use cases we 
envisioned. 

In the future, KAoS will also integrate with VIA to 
provide a means of policy enforcement outside the Luna host 
enironment. VIA [11] is a next generation cross-layer 
communications substrate for tactical networks and 
information systems. VIA allows fine-grained enforcement 
of policy down to operating-system-level operations such as 
the opening of a socket and the monitoring and filtering of 
specific elements of agent messaging. 

 

 
Figure 2: Luna Conceptual Architecture. 

 
In order to support dynamic scalability, load balancing, 

adaptive resource management, and specific application 
needs, the Luna platform supports the policy-governed 
option of allowing the state of agents (vs. code of agents) to 
migrate between operating environments and hosts. The 
Luna environment maintains agent mailboxes with message 
forwarding when agents migrate. Luna state mobility will 
provide the foundation for future implementation of agent 
persistence (i.e., saving and loading agent state to a persistent 
store). 

C. Automated Mapping Between Java and OWL 
Within the base class for Luna cyber agents are defined 

some common agent tasks that can be called through OWL 
descriptions. However, one of the most important 
innovations in Luna is the ability to add custom agent actions 
to the policy ontology, based on their Java equivalent. IHMC 
provides a Java2OWL tool to assist with this task. 

To understand this feature, it is important to understand 
that the framework allows translation from the KAoS 
‘method call’ messages to OWL action instance descriptions 
for policy checking, and back to method calls. The ability to 
convert an OWL description to a Java method call is the 
feature that puts ‘teeth’ in obligations. A Luna environment 
can invoke such methods on itself or any set of agents hosted 
on that Luna, or pass the obligation to one or more remote 
Luna environments for execution. Combine this obligation 
invocation feature with the fact that obligations can be 
triggered by one set of actors and fulfilled by another set of 
actors (e.g., Luna obligated to do X when Agent does Y, All 
Agents obligated to do X when Luna does Y), and we have a 
foundation for the implementation of what are called in 
KAoS “collective obligations” [12]. These are obligations 
that specify what must be done by some group of agents 
without saying exactly how it should be done and which 
specific agent(s) should do it. 

The Java2OWL tool can be used to browse custom agent 
code, select methods to bring under policy control, and 
generate an OWL description for the selected method 
signatures. These methods are then available for policies as 
Actions performed by Agents of that type. The only 



prerequisite is that agent code must be available (on the 
classpath) when Luna starts. 

Our ontology for method call requests is currently low-
level, representing Java Methods and their parameters 
including the parameter data types and the order of the 
parameters in the method signature. 

 

 
Figure 3: Java2OWL Tool. 

D. Selected Applications of Luna to Cyber Operations  
Agents play a variety of roles in our cyber operations 

framework [12]. Among the most demanding is in multi-
layer agent processing and tagging of live or retrospectively 
played-back NetFlow data representing worldwide Internet 
traffic. A high-level view of roles and relationships among 
agents relating to these functions is shown in figure 4. 

Incoming UDP traffic goes to a NetFlow agent for 
parsing and transformation into Java objects (1). In principle, 
the same or different data could be routed to multiple 
NetFlow agents on the same or different hosts to share the 
processing load. The NetFlow agent sends the data to any 
number of Tagger agents that work in parallel in real-time to 
tag the data (2). For example, Watchlist agents tag data that 
appears on whitelists or blacklists while IDS Match agents 
tag data corresponding to intrusion detection alerts. Drawing 
on selected results from low-level tagging agents, Attack 
pattern agents may be defined to look for higher-level attack 
patterns. By this means, agent annotations do not merely 
highlight low-level indicators of threat patterns, but can 
directly identify the type of threat itself. For instance, instead 
of requiring the analyst to notice that a configuration of 
connecting lines (some of which may be obscured) indicates 
a distributed port scan, agents working on abstracted data 
semantics can directly indicate the source of the attack. As 
another example, if a message is anomalous because it is 
sending oversized packets to a port associated with an SQL 
database, higher-level agents can abstract that message and 
represent it as an instance of an SQL injection attack. A 

system of semaphores ensures that all the Tagger agents have 
completed their work before the NetFlow agent sends results 
to the Flow Cache (3). NetFlow Visualization agents enforce 
policies that mediate data being sent to analyst displays, 
ensuring, among other things, that data not authorized for 
viewing by particular users are automatically filtered out (4). 

 
Figure 4: Agent processing and tagging of NetFlow data. 

 
The Esper complex event processor [13] provides support 

for efficient ad hoc queries of many types that can be 
initiated and consumed by other visualization agents (e.g., 
Stripchart View agent) or by agents of other types for further 
processing (5). We are also considering the use of Esper for 
data stream handling further upstream in the agent analytic 
process. 

CogLog Correlator agents ingest combined data from 
selected Tagger agents operating on real-time data (6) and 
historical data within the CogLog (7). The CogLog is 
a Semantic-Wiki-based tool prototype with which software 
agents and human analysts can maintain and use a log of 
findings pertinent to a given investigation, while also linking 
to other relevant information from prior cases [12]. Unlike 
the real-time Tagger agents, the Correlator agent can perform 
deeper kinds of analytics in “out of band” mode. Among 
other things, this correlated information can help different 
analysts “connect the dots” between related investigative 
efforts. The Correlator agents may send additional data 
annotations to NetFlow Visualization agents and/or to agents 
supporting other visualizations (e.g., Connection Graph 
view) (8). Our Attack Pattern Learning Agents provide 
another example of an “out of band” agent type. These 
agents consume and process all NetFlows (rather than just 
subsets of tagged data produced by Tagger agents) in order 
to learn and propagate useful threat patterns. 

In the future, exploration of larger questions of 
adversarial intent, attack strategies, and social connections 
among attackers could also proceed along similar lines of 
increasing abstraction in agent processing. The ability to 
reduce perception and reasoning requirements on the analyst 
through fixed or ad hoc organizations of agents processing 
visual and logical data dimensions is a major benefit of 
agent-based analytics. 



 

 
Figure 5: Initial Luna performance data. 

 
Initial performance data on Luna is promising, even 

though we have not yet focused significant attention on 
optimization of the framework. With respect to live 
processing on our test configuration (Mac Pro with two 
Quad-core Intel Xeon @ 2.26GHz with 16 GB RAM, 
1000baseT Ethernet, Mac Pro RAID Level 0, 4x2TB), the 
IHMC network of ~100 nodes is the only one we have tested 
thus far. Performance at this small scale of less than 1000 
flows/second is, of course, excellent. 

With respect to retrospective performance in our current 
configuration, the maximum rate of our CyberLab NetFlow 
emulator playing back Internet 2 data is 80k flows/second 
(~14MB/second) and the maximum rate of Luna agent 
NetFlow parsing is 60k flows/second. Sample configurations 
that include the additional task of maintaining a cache of 
NetFlows in shared RAM result in rates of 52k flows/second 
(single watchlist agent with 50 ips on its list), 49k 
flows/second (a Watchlist agent added with 700 IPs on its 
list), 43k flows/second (four more Watchlist agents added 
with 10 IPs each on their lists), and 39k flows/second (an 
IDS Match agent added whose performance is constrained 
by file I/O). 

We realize that these performance numbers fall short of 
requirements for some large-scale cyber applications. We are 
confident that an effort to optimize agent processing within 
and between agents would yield significant performance 
increases. More importantly, because of the distributed 
nature of the Luna architecture, we are in a good position to 
take advantage of whatever scale of computing and network 
resources might be available for a given application. 

IV. LUNA POLICY EXAMPLES 
Luna is governed by policy statements that take either the 

form of authorization or obligation policies as follows: 
• Actor is [authorized | not authorized] to perform Action 

requested by Actor with attributes… 
• [before | after] Actor performs Action requested by 

Actor with attributes 
Actor is [obligated | not obligated] to perform Action 
with attributes… 

When Luna policies are defined, the underlined terms 
above (Actor, Action) are replaced in point-and-click fashion 
with more-specific concepts automatically drawn from the 

extensible ontologies maintained within KAoS. Actors in the 
policy statements above could be made to refer to one or 
more classes or instances of the Luna host environment, e.g.: 
• Class: All Luna environments 
• Extensionally defined collection of groups: Luna in 

group 'NOC_A', 'NOC_B’ 
• Intensionally defined collection of groups: Luna with 

context property 'Alert Level' in ('Critical', 'High’) 
• Extensionally defined collection of individuals: 

LunaNOC_A_1, LunaNOC_A_Shared 
• Intensionally defined collection of individuals: Luna 

containing agent 'BotnetC2Correlator’ 
Actors could also be made to refer to classes and 

instances of Luna agents, e.g.: 
• Class: All Agents 
• Intensionally defined Group: Watchlist matching agents 
• Extensionally defined Group: Agents in group NOC_A 
• Extensionally defined Group: Agents running in Luna 

NOC_A_1 
• Specific Instances: BotnetC3Correlator_Agent, 

ZeusWatchlistAgent 
To make these ideas more concrete, we now give three 

groups of examples: 1). Teamwork policies; 2). Network 
Operations Center scenario policies; 3). Policies for tuning 
system performance. 

A. Teamwork Policy Examples 
It is one thing to enable software agents to perform the 

taskwork needed to help human analysts with complex high-
tempo tasks and quite another to equip them with the 
capabilities that allow them to become good team players. 
Our perspective on resilient human-agent teamwork comes 
from joint activity theory [14], a generalization of Herbert 
Clark’s work in linguistics [15, p. 3]. Our theory describes 
the criteria for joint activity, outlines aspects of its 
“choreography,” and highlights the major requirements for 
effective coordination in situations where the activities of 
parties are interdependent. For the purposes of this 
discussion, we focus primarily on examples of the sorts of 
policies we are designing to support human-agent teamwork, 
under the headings of observability, directability, 
interpredictability, learning, and multiplicity: 
• Observability: An important aspect of observability is 

being able to know how agents are progressing on their 
current tasks, especially those in which their actions are 
interdependent (e.g., “I'm not going to be able to get you 
the information you need to get started on your task by 
the deadline to which we agreed previously.”) To 
support this, we have implemented built-in mechanisms 
and policies for progress appraisal [16] in Luna. 

• Directability: When agents need to be redirected due to 
changes in priorities, new knowledge, or failures, users 
can add and retract obligations on particular agents or 
classes of agents or Luna environments at runtime. This 
includes obligations relating to life-cycle control, such 
as pausing or resuming their operation. 

• Interpredictability: One way in which the 
interpredictability of an agent can be assessed is through 



a combination of data on its current progress with its 
past history of work in similar contexts. 

• Learning: The observability features of agents can be 
used to support capabilities for policy learning—i.e., 
creating new KAoS policies programmatically based on 
patterns that are consistent and important to tasks being 
undertaken by a whole class of agents. The process of 
learning itself may be subject to policies relating to the 
scope of adaptation permitted in a given context. It may 
also be subject to optional policy requirements for 
human oversight. 

• Multiplicity: Multiplicity, the requirement for multiple 
perspectives on the same data, can be supported by 
policy-based enforcement of data consistency across 
these perspectives. For example, policies would ensure 
that changes in one view of the data would propagate 
correctly (and with the appropriate policy restrictions on 
what can be viewed) to other kinds and instances of 
views on that data. 

Of the areas mentioned above, progress appraisal and 
agent (re-)directability through obligations are currently the 
most well-worked-out aspect of these five human-agent-
teamwork-based considerations in Luna. As an illustration of 
how these considerations can be supported through policy, 
we describe our implementation of progress appraisal below. 

Providing regular reports of agent progress is an integral 
feature of every Luna agent. The Luna environment handles 
all of the progress management including: 
• Registration and deregistration of users and agents to 

receive progress reports from particular agents; 
• Maintaining a timer to send agent progress reports 

periodically (e.g., every minute); 
• Querying the agent periodically for its current progress, 

or providing an interface for agents to announce 
milestone-based progress events; 

• Distributing the agent’s progress reports to the interested 
parties. 

The decision to have the Luna environment manage 
progress appraisal rather than relying on the agents 
themselves was a deliberate one. Some of the key advantages 
over agent self-managed progress appraisal include: 
• Luna can provide progress in conditions where the agent 

cannot; 
• Luna may pause an agent so that it would no longer 

capable of sending progress messages. 
• The agent may be buggy or otherwise unresponsive, but 

Luna will still send progress to users (indicating that the 
agent is unresponsive); 

• Policy control over the frequency and recipients of 
progress appraisal enables directing or redirecting 
progress appraisals from groups of agents to other 
agents for further analysis. 

B. Network Operations Center Scenario Policy Examples 
In the development of experimental scenarios for 

network operations center use of our framework, we 
considered requirements for access control, action 
authorization, information sharing, and coordination between 

local and remote sites. Below we give some illustrative 
examples of KAoS policy support in Luna for these issues. 

Imagine a scenario involving two cooperating network 
operations centers (NOC) at different locations, NOC_A and 
NOC_B. Each NOC has its own policies, in addition to 
policies that are shared between them. 

NOC_A has three Luna environments: 
• Luna_NOC_A_Monitoring: Within this environment, 

monitoring administrators from NOC_A create and 
maintain agents to support shared visualizations. 

• Luna_NOC_A_Analysis: Within this environment, 
analysts from NOC_A create agents to perform ad hoc 
analysis and investigation tasks. 

• Luna_NOC_A_Shared: Within this environment, 
analysts from either NOC_A or NOC_B can create 
agents to perform ad hoc analysis and investigation 
tasks. 

NOC_B has one Luna environment: 
• Luna_NOC_B: Within this environment, analysts from 

NOC_B create agents to perform monitoring, ad hoc 
analysis, and investigation tasks. 

KAoS uses the concept of “domains” to define the scope 
of policies. In this case, the two NOCS will share a domain. 
In addition, each NOC will have its own domain, and, within 
NOC A, each NOC A Luna environment will be a 
subdomain to the NOC A domain. For the convenience of 
the administrator wanting to minimize the number of policies 
that need to be defined, the mode of a domain can be set to 
be “tyrannical” (where everything is forbidden that is not 
explicitly authorized) or “laissez-faire” (where everything is 
permitted that is not explicitly forbidden). Here are some 
examples of policies in the scenario, assuming a tyrannical 
domain. 

Authorization Policy Examples. This positive 
authorization policy specifies that NOC Administrators can 
make any request of any Luna environment: 

Any Luna is authorized to perform any Action 
requested by a member of the NOC_Administrators Group 

This positive authorization policy allows any user to 
make requests of any Luna environment belonging to the 
same group as that user. 

Luna in any Group is authorized to perform any Action 
requested by a member of the same Group 

The positive authorization policy permits remote users 
from NOC_B to manage agents within the shared Luna 
environment, while the negative authorization policy 
prevents these users from lifecycle actions such as stopping 
the environment or changing its context properties: 

LunaNOC_A_Shared is authorized to perform any Action 
requested by a member of Group NOC_B 

 
LunaNOC_A_Shared is not authorized to perform any 
environment lifecycle action 

requested by a member of Group NOC_B 
Obligation Policy Examples. This positive obligation 

policy requires any newly created Watchlist agent to send 
progress reports to the Watchlist Correlation agent: 

After Any Luna performs create agent of type 'Watchlist Agent,’ 
that Luna is obligated to add agent progress listener where: 

listener is 'Watchlist Correlation Agent’ 



agent is the agent that was created 
This positive obligation policy requires approval by 

NOC-Aadmin before any agents not specifically requested 
migrate into the NOC_A group: 

Before Luna_NOC_A_Shared performs move agent where 
destination in group NOC_A 
and not requested by ‘NOC-AAdmin’ 

That Luna is obligated to obtain approval from ‘NOC-AAdmin’ 
Obligation Policy Examples Combining Luna Agents and 

Environments. The Actors in an obligation policy may be a 
mix of Luna environments and agents. In this way, a Luna 
environment can respond to specified agent actions and vice 
versa. 

For example, this positive obligation policy requires the 
Luna_NOC_A_Analysis environment to send a progress 
update every time a Botnet agent identifies a new botnet 
command-and-control address: 

After BotnetAgent performs FoundC2 
Luna_NOC_A_Analysis is obligated to perform 
SendAgentProgressUpdate 

This positive obligation policy requires a class of agents 
that keep large data caches in RAM to clear their caches 
before being paused: 

Before Luna performs PauseAgent where 
Agent is of type CacheAgent 

That Agent is obligated to perform DumpCache 

C. Policy Examples for Tuning System Performance 
As described above, policy services can be used to 

regulate the taskwork and teamwork of Luna agents. A few 
examples of additional potential uses of policy for tuning 
system performance include the following: 

• Service orchestration. Such policies might regulate 
how an agent chooses other actors to construct 
capabilities for high-level mission requirements. 

• Operational bounds. A Web server that receives a 
request with a SQL query will search for the best 
database to execute that query—and may in fact 
induce the creation of a database for such purpose. 
Policies might govern when the creation of a 
database is permitted and when it is not. 

• QoS policies. Such policies would define the 
operational ranges of different services and define 
the trade-off strategies between different metrics 
[17]. 

V. CONCLUSIONS 
This paper has provided an overview of some of the 

unique features of the Luna agent framework. In particular, 
we have shown how Luna is specifically designed to allow 
developers and users to leverage different forms of policy-
based governance in an endless variety of ways. Although 
our illustrations have been drawn from the application of 
Luna to cyber operations, we believe that its features will 
prove useful in the future for many additional problem 
domains. 
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